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Which home heating model parameters of specific homes can we learn automatically from energy monitoring data 
in order to provide better advice to specific households about their home heating transition?
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Data collected

Category Measured data Symbol Unit API Sensor

comfort setpoint Tset °C 

weather 

outdoor temperature Tout °C

KNMIwind U m/s

global horizontal 
irradiation I W/m2

indoor indoor temperature Tin °C 

installation
supply temperature Ts °C 

return temperature Tr °C 

heating 
energy

electricity E kWh
Enelogic 

gas G m3

occupancy/
ventilation

CO2 concentration CO₂ ppm 

Bluetooth presence BTpres #pp 

smart 
meter

boiler

Enexis
(DSO)

Twomes
Backoffice

OpenTherm 
Monitor

Wi-Fi router

Internet

Enelogic
(ODA)

Ts    +   Tr

smart meter
module

Tin

P4

weather data

P3 open data 
about 

buildings

Twomes
Analysis pipeline

app

occupant

advisor

Scan for 
open source 
software and 
hardware on 

GitHub

SUBJECTS & DATA

Scan for dataset

Scan for 
more results

Measurement devices (cost including PCB, enclosure, power supply, cabling)

Device Module Cost QR Set A Set B Set C Set D

OpenTherm 
monitor

OpenTherm 
monitor

€ 25    

smart meter 
module

smart meter 
module

€ 15  

smart meter 
module
+ boiler module
+ room monitor

smart meter 
module

€ 15    

boiler module € 25   

room monitor € 20  

room monitor
incl. CO2-sensor

€ 50 

Total per home € 40 € 60 € 115 € 85

RESULTS & CONCLUSIONS
Initial results

Building parameters can be learned:

- specific heat loss: H [W/K],

- thermal mass: C [W/K] (or [Wh/K])

- thermal inertia: τ [s] (or [h])

Model parameters to learn
symbol scope parameter unit
H building specific heat loss W/K
τ building thermal inertia s (h)
C building thermal mass (C = H × τ) J/K (Wh/K)
A building apparent horizontal window area m2

P installation maximum heating system power W
ηs installation superior heating system efficiency J0

CD behaviour comfort desire (thermostat setpoints) K‧s

DATA ANALYSIS

Scan for 
GEKKO Python
heat balance 

model Σ(I � Δt) [J/m2] × A [m2]
where 

average solar irradiation: I [W/m2]

gas for heating: ΔGCH [m3]
×

superior calorific value gas:
hsup = 35.170.000 [J/m3]

×
superior heating efficiency: ηs [J0]

∆𝑇𝑇𝑖𝑖𝑖𝑖 𝐾𝐾 =
∆𝑄𝑄𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖 𝐽𝐽 − ∆𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐽𝐽

𝐶𝐶 [𝐽𝐽/𝐾𝐾]

𝐶𝐶[𝐽𝐽/𝐾𝐾] = 𝐻𝐻[𝑊𝑊/𝐾𝐾] × 𝜏𝜏 𝑠𝑠

heat loss: ΔQloss [J] heat gain: ΔQgain [J]

‘internal’ heat

solar irradiation

heating system
(boiler + distribution)

temperature drop

transmission
+

infiltration
+

ventilation

occupants, 
electric appliances,

domestic hot water (DHW)

specific heat loss: 
H [W/ K]

×
effective heat 

demand:
HD [K � s]

where 

HD = 
(Tin-Tout;eff) [K] × Δt [s]

Home heat balance during a time interval Δt

Smart meters:
• 6 brands
• 13 models
• 3 versions DSMR standard
• P1-poort: 9 in use; 31 not

Thermostats:
• 10 brands
• 25 models

Boilers: 
• 6 brands / 10 models
• 27 OpenTherm compatible; 13 not;
• boiler-thermostat-combinations:

17 brand-brand; 35 model-model

63 households responded to a recruitment survey; 40 households in Zwolle (mostly in Assendorp) invited for measurement campaign

> 35 million data points; from 23 homes for which we received essential data properties longer than 3 weeks (> 70 days of data per home)

GitHub

Paris agreement: limit temperature < 1.5 ˚C above pre-industrial levels. Implies CO2-emission budget; start reducing soon helps avoid cliff. In NL, most homes in 2030 & 2050 were built before 2015. Homes and heating transition may vary.
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What was challenging

- outlier removal (in particular for smart meter data)

- interpolation (in particular for smart meter timestamps)

- GEKKO Python model (validated with virtual home data)

- 10 to 50-fold increased analysis speed after switch to

RMSE (i.e., using EV_TYPE=2, instead of EV_TYPE=1)

What’s next

- assess increased precision over calculating

parameters based on public building data

- learn installation parameters

- learn infiltration and ventilation parameters

- assess utility for occupant and advisor

- use to assess real effect of interventions

Inverse grey-box modelling to learn model parameters

https://edu.nl/xghje
https://edu.nl/demr9
https://edu.nl/aqnhv
https://edu.nl/jw9j3
https://edu.nl/kttbe
mailto:energietransitie@windesheim.nl
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