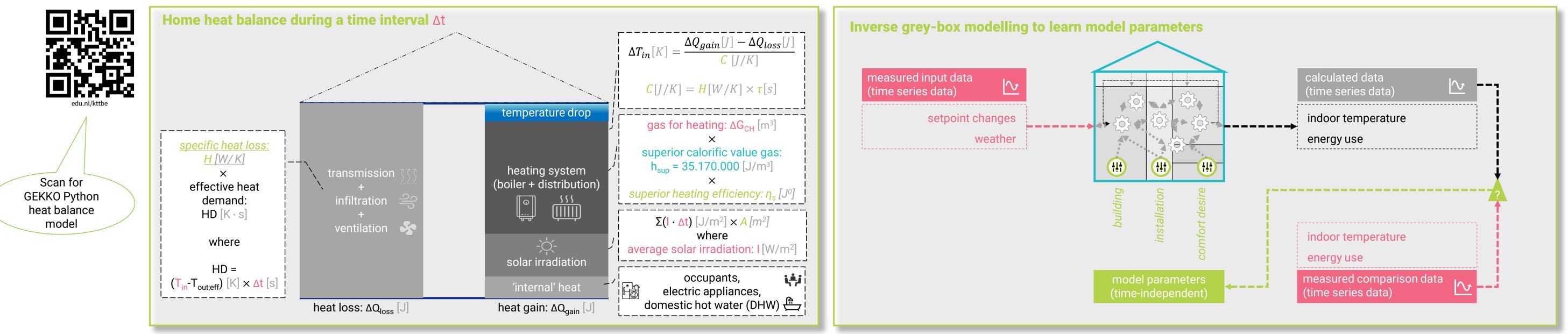
Twomes: Digital Twins for the Home Heating Transition

Henri ter Hofte¹, Marco Winkelman¹, Hossein Rahmani¹, Jeike Wallinga¹ ¹Research Group Energy Transition, Windesheim University of Applied Sciences, Zwolle, the Netherlands energietransitie@windesheim.nl

Which home heating model parameters of specific homes can we learn automatically from energy monitoring data TECH in order to provide better advice to specific households about their home heating transition?

BDR THERMEA GROUP




Twomes movie

years \rightarrow 2027	\longleftarrow 8 years \longrightarrow	2035		20	15	20 Existing he		2030 New homes	2050				
n budget; start reducing soon helps avoid cliff.				In NL, most homes in 2030 & 2050 w				ere built before 2015.		Homes and heating transition may vary.			
Measurement de	vices (cost including	g PCB, end	closure	e, power si	upply, cab	ling)		Data collect	ed				
Device	Module	Cost	QR	Set A	Set B	Set C	Set D	Category	Measured data	Symbol	Unit	API	Sensor
OpenTherm	OpenTherm	€ 25		✓		√	√	comfort	setpoint	T _{set}	°C		✓
monitor	monitor	τ 23	v	v		v	v		outdoor temperature	T _{out}	°C		
smart meter	smart meter	€15	\checkmark	\checkmark				glo	wind	U	m/s	KNMI	
module	module								global horizontal irradiation	I	W/m ²		
smart meter module + boiler module + room monitor	smart meter module	€15	\checkmark		\checkmark	\checkmark	✓	indoor	indoor temperature	T _{in}	°C		✓
	boiler module	€ 25			\checkmark	\checkmark	✓	installation	supply temperature	Τ _s	°C		\checkmark
	room monitor	€ 20			\checkmark		√	motunation	return temperature	T _r	°C		\checkmark
		0 20						heating	electricity	E	kWh	Enelogic	1
	room monitor	€ 50				\checkmark		energy gas	gas	G	m ³		•
	incl. CO ₂ -sensor							occupancy/	CO ₂ concentration	CO ₂	ppm		\checkmark
Total per home				€ 40	€ 60	€ 115	€ 85	ventilation	Bluetooth presence	BT _{pres}	#pp		\checkmark

SUBJECTS & DATA

DATA ANALYSIS

######################################	######################################	######################################	######################################
<pre># initialize gekko m = GEKKO(remote=False) m.time = np.arange(0, duration_s, step_s)</pre>	<pre># Model parameter: H [W/K]: specific heat loss H_W_p_K = m.FV(value=300.0, lb=0, ub=1000) H_W_p_K.STATUS = 1; H_W_p_K.FSTATUS = 0</pre>	if np.isnan(iterator_A_m2):	<pre>Q_gain_W = m.Intermediate(Q_gain_gas_CH_avg_W + Q_gain_sol_avg_W + Q_gain_int_avg_W) Q_loss_W = m.Intermediate(H_W_p_K * (T_in_avg_C - T_out_e_avg_C)) C_J_p_K = m.Intermediate(H_W_p_K * tau_s) m.Equation(T_in_avg_C.dt() == ((Q_gain_W - Q_loss_W) / C_J_p_K))</pre>
	<pre># Model parameter: tau [s]: effective thermal inertia tau_s = m.FV(value=(100 * s_p_h), lb=(10 * s_p_h), ub=(1000 * s_p_h)) tau_s.STATUS = 1; tau_s.FSTATUS = 0</pre>	<pre>irradiation_hor_avg_W_p_m2 = m.MV(value=irradiation_hor_avg_W_p_m2_array) irradiation_hor_avg_W_p_m2.STATUS = 0; irradiation_hor_avg_W_p_m2.FSTATUS = 1 Q_gain_sol_avg_W = m.Intermediate(irradiation_hor_avg_W_p_m2 * A_m2)</pre>	<pre>m.options.IMODE = 5 m.options.EV_TYPE = ev_type # specific objective function (L1-norm vs L2-norm) m.solve(False)</pre>

RESULTS & CONCLUSIONS

alt.Sa	Model parameters to learn							
	symbol	scope	parameter	unit				
	н	building	specific heat loss	W/K				
	τ	building	thermal inertia	s (h)				
■#.57m	С	building	thermal mass (C = H $\times \tau$)	J/K (Wh/K)				
edu.nl/jw9j3	Α	building	apparent horizontal window area	m ²				
	Р	installation	maximum heating system power	W				
Scan for	η _s	installation	superior heating system efficiency	J ⁰				
more results	CD	behaviour	comfort desire (thermostat setpoints)	K∙s				

Initial results

Building parameters can be learned:

- specific heat loss: **H** [W/K],
- thermal mass: **C** [W/K] (or [Wh/K])
- thermal inertia: τ [s] (or [h])

What was challenging

- outlier removal (in particular for smart meter data)
- interpolation (in particular for smart meter timestamps)
- GEKKO Python model (validated with virtual home data)
- 10 to 50-fold increased analysis speed after switch to RMSE (i.e., using EV_TYPE=2, instead of EV_TYPE=1)

What's next

- assess increased precision over calculating
- parameters based on public building data
- learn installation parameters
- learn infiltration and ventilation parameters
- assess utility for occupant and advisor
- use to assess real effect of interventions